Crystal structure of catalase HPII from Escherichia coli.
نویسندگان
چکیده
BACKGROUND Catalase is a ubiquitous enzyme present in both the prokaryotic and eukaryotic cells of aerobic organisms. It serves, in part, to protect the cell from the toxic effects of small peroxides. Escherichia coli produces two catalases, HPI and HPII, that are quite distinct from other catalases in physical structure and catalytic properties. HPII, studied in this work, is encoded by the katE gene, and has been characterized as an oligomeric, monofunctional catalase containing one cis-heme d prosthetic group per subunit of 753 residues. RESULTS The crystal structure of catalase HPII from E. coli has been determined to 2.8 A resolution. The asymmetric unit of the crystal contains a whole molecule, which is a tetramer with accurate 222 point group symmetry. In the model built, that includes residues 27-753 and one heme group per monomer, strict non-crystallographic symmetry has been maintained. The crystallographic agreement R-factor is 20.1% for 58,477 reflections in the resolution shell 8.0-2.8 A. CONCLUSIONS Despite differences in size and chemical properties, which were suggestive of a unique catalase, the deduced structure of HPII is related to the structure of catalase from Penicillium vitale, whose sequence is not yet known. In particular, both molecules have an additional C-terminal domain that is absent in the bovine catalase. This extra domain contains a Rossmann fold but no bound nucleotides have been detected, and its physiological role is unknown. In HPII, the heme group is modified to a heme d and inverted with respect to the orientation determined in all previously reported heme catalases. HPII is the largest catalase for which the structure has been determined to almost atomic resolution.
منابع مشابه
Structure of the heme d of Penicillium vitale and Escherichia coli catalases.
A heme d prosthetic group with the configuration of a cis-hydroxychlorin gamma-spirolactone has been found in the crystal structures of Penicillium vitale catalase and Escherichia coli catalase hydroperoxidase II (HPII). The absolute stereochemistry of the two heme d chiral carbon atoms has been shown to be identical. For both catalases the heme d is rotated 180 degrees about the axis defined b...
متن کاملPost-Transcriptional Regulator Hfq Binds Catalase HPII: Crystal Structure of the Complex
We report a crystal structure of Hfq and catalase HPII from Escherichia coli. The post-transcriptional regulator Hfq plays a key role in the survival of bacteria under stress. A small non-coding RNA (sRNA) DsrA is required for translation of the stationary phase sigma factor RpoS, which is the central regulator of the general stress response. Hfq facilitates efficient translation of rpoS mRNA, ...
متن کاملIdentification of a novel bond between a histidine and the essential tyrosine in catalase HPII of Escherichia coli.
A bond between the N delta of the imidazole ring of His 392 and the C beta of the essential Tyr 415 has been found in the refined crystal structure at 1.9 A resolution of catalase HPII of Escherichia coli. This novel type of covalent linkage is clearly defined in the electron density map of HPII and is confirmed by matrix-assisted laser desorption/ionization mass spectrometry analysis of trypti...
متن کاملCatalase HPII of Escherichia coli catalyzes the conversion of protoheme to cis-heme d.
Catalase HPII from aerobically grown Escherichia coli normally contains heme d but cultures grown with poor or no aeration produce HPII containing a mixture of heme d and protoheme IX. The protoheme component of HPII from anaerobically grown cells is converted into heme d during treatment of the purified enzyme with hydrogen peroxide. It is concluded that heme d found in catalase HPII is formed...
متن کاملCatalase HPII from Escherichia coli exhibits enhanced resistance to denaturation.
Catalase HPII from Escherichia coli is a homotetramer of 753 residue subunits. The multimer displays a number of unusual structural features, including interwoven subunits and a covalent bond between Tyr415 and His392, that would contribute to its rigidity and stability. As the temperature of a solution of HPII in 50 mM potassium phosphate buffer (pH 7) is raised from 50 to 92 degrees C, the en...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Structure
دوره 3 5 شماره
صفحات -
تاریخ انتشار 1995